Metodo di composizione delle caratteristiche

Nota del corso di Elettrotecnica A a cura di Lorenzo Codecasa

I. Bipoli resistivi

1. Un **bipolo** B interessato da una corrente I e da una tensione V è **resistivo** se V ed I sono legati da una relazione finita

$$f(I, V) = 0. (I.1)$$

Tale equazione definisce una linea nel piano (I, V) o equivalentemente nel piano (V, I) detta caratteristica.

2. Invertendo il senso in cui si misura la corrente I si definisce la corrente I'

$$I=-I'. (I.2)$$

Sostituendo la (I.2) nella (I.1) si ha

$$f(-I', V)=0.$$

Dunque la caratteristica nel piano (I', V) o equivalentemente nel piano (V, I') è la linea simmetrica rispetto all'asse I della caratteristica nel piano (I, V) o equivalentemente nel piano (V, I) come mostrato in fig. I.1.

Analogamente invertendo il senso in cui si misura la tensione V si definisce la tensione V

$$V=-V'$$
. (I.3)

Sostituendo la (I.3) nella (I.1) si ha

$$f(I, -V') = 0.$$

Dunque la caratteristica nel piano (I, V') o equivalentemente nel piano (V', I) è la linea simmetrica rispetto all'asse V della caratteristica nel piano (I, V) o equivalentemente nel piano (V, I) come mostrato in fig. I.1.

A questo punto è chiaro che invertendo sia il senso in cui si misura la corrente I sia il senso in cui si misura la tensione V si ha

$$f(-I', -V')=0.$$

Dunque la caratteristica nel piano (I', V') o equivalentemente nel piano (V', I') è la linea simmetrica rispetto all'origine della caratteristica nel piano (I, V) o equivalentemente nel piano (V, I) come mostrato in fig. I.1.

3. Un bipolo resistivo si dice **controllato in corrente** se esso ammette una e una sola tensione V in corrispondenza ad ogni corrente I. V può allora esprimersi in funzione di I e si scrive

$$V=V(I)$$
.

Analogamente un bipolo si dice **controllato in tensione** se esso ammette una e una sola corrente I in corrispondenza ad ogni tensione V. I può allora esprimersi in funzione di V e si scrive

$$I=I(V)$$
.

4. Un bipolo resistivo è detto **affine** se la sua linea caratteristica è una linea retta.

Dunque un bipolo affine o è controllato in corrente o è controllato in tensione o è controllato sia in corrente che in tensione. Un bipolo resistivo affine controllato in corrente (fig. I.2) ha per caratteristica una retta non parallela all'asse V di equazione

$$V=RI+E$$
 (I.4)

Analogamente un bipolo resistivo affine controllato in tensione (fig. I.3) ha per caratteristica una retta non parallela all'asse *I* di equazione

$$I=GV+A$$
. (I.5)

Dunque un bipolo resistivo affine controllato sia in corrente che in tensione ammette sia la rappresentazione controllata in corrente (I.4) sia la rappresentazione controllata in tensione (I.5). Il passaggio dalla prima alla seconda avviene mediante le relazioni

$$G=1/R$$
 $A=-E/R$

mentre il passaggio dalla seconda alla prima è dato dalle relazioni

$$R=1/G$$

 $E=-A/G$.

II. Soluzione del circuito elementare

Si connettano due bipoli resistivi B_1 e B_2 come mostrato in fig. II.1. In questo modo si è costituito il più semplice circuito concepibile detto **elementare**. Si assume che la corrente I_1 e la tensione V_1 di B_1 siano misurate con la **convenzione dei generatori** e che la corrente I_2 e la tensione V_2 di B_2 siano invece misurate con la **convenzione degli utilizzatori** come mostrato in fig. II.1. La caratteristica di B_1 è

$$f_1(I_1, V_1) = 0.$$

e la caratteristica di B₂ è

$$f_2(I_2, V_2)=0.$$

D'altra parte la legge di Kirchhoff delle correnti impone l'uguaglianza delle correnti

$$I_1 = I_2 = I$$

e la legge di Kirchhoff delle tensioni impone l'uguaglianza delle tensioni

$$V_1 = V_2 = V$$

Dunque la soluzione (I, V) del circuito ottenuto dalla connessione dei due bipoli è data dalla soluzione del sistema

$$f_1(I, V)=0$$

 $f_2(I, V)=0$.

Le soluzioni di tale sistema corrispondono alle intersezioni delle caratteristiche dei due bipoli nel piano (I, V) o equivalentemente nel piano (V, I) come mostrato in fig. II.2.

Si noti che può non esistere alcuna intersezione. In questo caso il circuito elementare non ammette alcuna soluzione. Diversamente esistono una o più intersezioni corrispondenti a una o più soluzioni del circuito elementare.

III. Connessione in serie di due bipoli resistivi

1. Due bipoli resistivi B_1 e B_2 connessi come mostrato in fig. III.1 si dicono **connessi in serie**. L'insieme dei due bipoli connessi in serie forma un nuovo bipolo. Assunte correnti e tensioni I_1 e V_1 per B_1 , I_2 e V_2 per B_2 come mostrato in fig. III.1, la corrente e la tensione I_3 , V_3 di B_3 sono ottenute dalle leggi di Kirchhoff delle tensioni e delle correnti

$$V_3 = V_1 + V_2$$

 $I_3 = I_1 = I_2$.

Essendo B_1 resistivo di caratteristica f_1 (I_1 , V_1)=0 e B_2 resistivo di caratteristica f_2 (I_2 , V_2)=0., anche B_3 è resistivo. Infatti ha una caratteristica f_3 (I_3 , V_3)=0 che si può determinare nel seguente modo: ad ogni corrente I_3 la tensione V_3 , se esiste, è data dalla somma di una possibile tensione V_I di B_I corrispondente alla corrente I_3 e di una possibile tensione V_2 di B_2 corrispondente alla corrente I_3 . Questa procedura si interpreta graficamente come mostrato in fig. III.2.

Si noti che può accadere che nessuna corrente di B_1 sia anche corrente di B_2 . In questo caso la connessione serie di B_1 e B_2 risulta impossibile.

2. Nel caso particolare in cui ciascuno dei bipoli resistivi B_1 e B_2 sia affine, anche B_3 è affine, a condizione che la connessione sia possibile. Infatti due bipoli affini non controllati in corrente, non possono essere connessi in serie se hanno caratteristiche distinte, mentre possono essere connessi in serie se hanno la stessa caratteristica. In questo caso la caratteristica di B_3 è la stessa di quelle di B_1 e B_2 .

La connessione serie di un bipolo affine controllato in corrente B_1 e di un bipolo affine non controllato in corrente B_2 è sempre possibile e la caratteristica di B_3 coincide con quella del bipolo affine non controllato in corrente B_2 come mostrato in fig. III.3. Se B_1 e B_2 sono entrambi controllati in corrente B_3 è pure controllato in corrente e la caratteristica di B_3 si ottiene sommando le caratteristiche di B_1 e B_2 a pari corrente come mostrato in fig. III.4. Quindi se B_1 è affine e controllato in corrente ed ha caratteristica

$$V_1=R_1I_1+E_1$$

e se B_2 è affine e controllato in corrente ed ha caratteristica

$$V_2=R_2I_2+E_2$$

allora B_3 è affine econtrollato in corrente ed ha caratteristica

$$V_3 = R_3 I_3 + E_3$$

in cui

$$R_3 = R_1 + R_2$$

$$E_3 = E_1 + E_2$$
(III.1)

Dunque la caratteristica dei due bipoli affini controllati in corrente connessi in serie è completamente determinata dai parametri R_3 ed E_3 e può determinarsi in base alle equazioni (III.1) e (III.2) senza ricorrere al metodo grafico.

3. La caratteristica

$$V_3=RI_3+E$$

di un bipolo affine controllato in corrente B_3 è pari alla caratteristica della connessione serie di un resistore B_1 di resistenza R avente caratteristica

$$V_1=RI_1$$

e di un generatore indipendente B_2 di tensione E avente caratteristica

$$V_2 = E$$

come mostrato in figura fig. III.5.

IV. Connessione in parallelo di due bipoli resistivi

1. Due bipoli resistivi B_1 e B_2 connessi come mostrato in fig. IV.1 si dicono **connessi in parallelo**. L'insieme dei due bipoli connessi in parallelo forma un nuovo bipolo. Assunte correnti e tensioni I_1 e V_1 per B_1 , I_2 e V_2 per B_2 come mostrato in fig. IV.1, la corrente e la tensione I_3 , V_3 di B_3 sono ottenute dalle leggi di Kirchhoff delle tensioni e delle correnti

$$V_3 = V_1 + V_2$$

 $I_3 = I_1 = I_2$.

Essendo B_1 resistivo di caratteristica f_1 (I_1 , V_1)=0 e B_2 resistivo di caratteristica f_2 (I_2 , V_2)=0., anche B_3 è resistivo. Infatti ha una caratteristica f_3 (I_3 , V_3)=0 che si può determinare nel seguente modo: ad ogni tensione V_3 la corrente I_3 , se esiste, è data dalla somma di una possibile coorente I_1 di B_1 corrispondente alla tensione V_3 e di una possibile corrente I_2 di B_2 corrispondente alla tensione V_3 . Questa procedura si interpreta graficamente come mostrato in fig. IV.2.

Si noti che può accadere che nessuna tensione di B_1 sia anche tensione di B_2 . In questo caso la connessione parallelo di B_1 e B_2 risulta impossibile.

2. Nel caso particolare in cui ciascuno dei bipoli resistivi B_1 e B_2 sia affine, anche B_3 è affine, a condizione che la connessione sia possibile. Infatti due bipoli affini non controllati in tensione, non possono essere connessi in parallelo se hanno caratteristiche distinte, mentre possono essere connessi in parallelo se hanno la stessa caratteristica. In questo caso la caratteristica di B_3 è la stessa di quelle di B_1 e B_2 .

La connessione parallela di un bipolo affine controllato in tensione B_1 e di un bipolo affine non controllato in tensione B_2 è sempre possibile e la caratteristica di B_3 coincide con quella del bipolo affine non controllato in tensione B_2 come mostrato in fig. IV.3. Se B_1 e B_2 sono entrambi controllati in tensione B_3 è pure controllato in tensione e la caratteristica di B_3 si ottiene sommando le caratteristiche di B_1 e B_2 a pari tensione come mostrato in fig. IV.4. Quindi se B_1 è affine e controllato in tensione ed ha caratteristica

$$I_1 = G_1 V_1 + A_1$$

e se B_2 è affine e controllato in tensione ed ha caratteristica

$$I_2 = G_2V_2 + A_2$$

allora B_3 è affine e controllato in tensione ed ha caratteristica

$$I_3 = G_3 V_3 + A_3$$

in cui

$$G_3 = G_1 + G_2$$
 (IV.1)
 $A_3 = A_1 + A_2$ (IV.2)

Dunque la caratteristica dei due bipoli affini controllati in tensione connessi in parallelo è completamente determinata dai parametri G_3 e A_3 e può determinarsi in base alle equazioni (IV.1) e (IV.2) senza ricorrere al metodo grafico.

3. La caratteristica

$$I_3=GI_3+A$$

di un bipolo affine controllato in tensione B_3 è pari alla caratteristica della connessione parallelo di un resistore B_1 di conduttanza G avente caratteristica

$$I_1=GV_1$$

e di un generatore indipendente B_2 di corrente A avente caratteristica

$$I_2=A$$

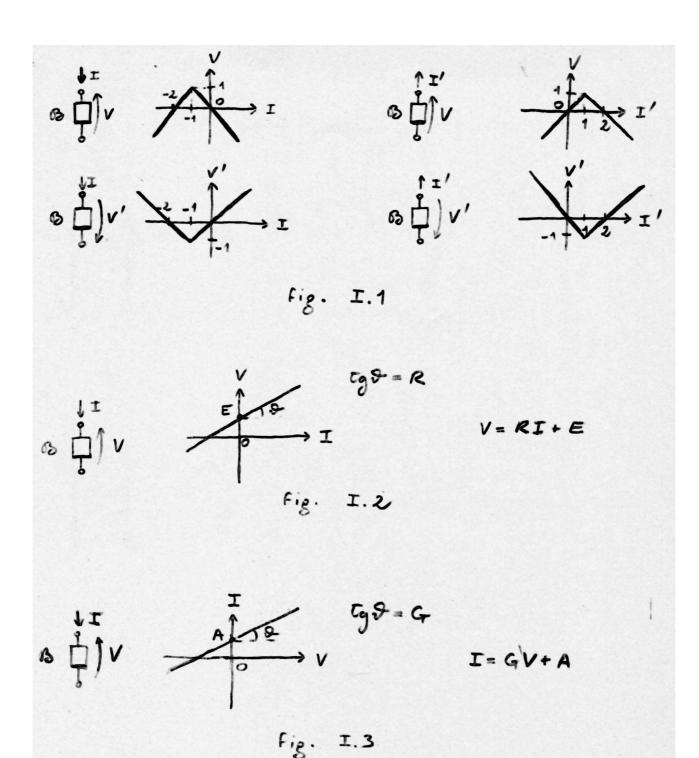
come mostrato in figura fig. IV.5.

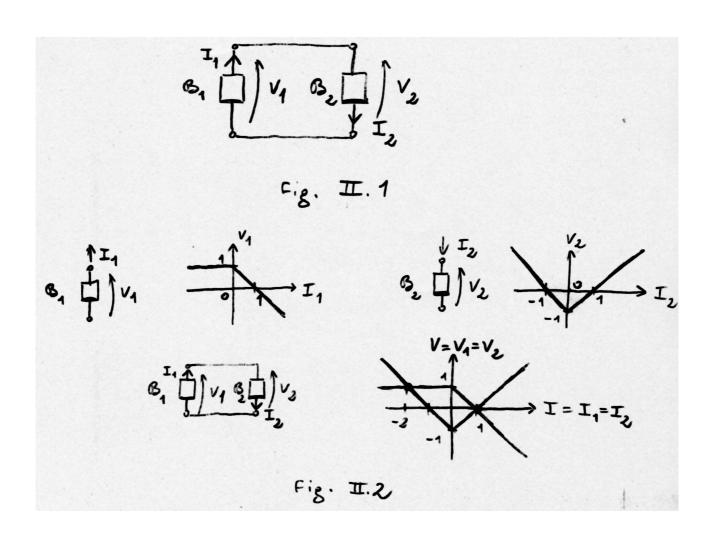
V. Bipoli ottenuti connettendo bipoli in serie e in parallelo

- 1. Connettendo in serie o in parallelo due bipoli B_1 e B_2 si ottiene dunque un nuovo bipolo. A questo punto connettendo il bipolo così ottenuto, che diciamo B_1 , con un nuovo bipolo B_3 , si ottiene un nuovo bipolo B_2 (fig. V.1). Questa procedura può continuare ottenendo in n passi un bipolo B_n . Se gli n+1 bipoli B_1, \ldots, B_{n+1} sono resistivi, anche i bipoli B_1 ,..., B_n sono resistivi e la loro caratteristica si ottiene componendo le caratteristiche come descritto sopra. E' chiaro che questa procedura è impossibile se impossibile è realizzare una delle operazioni di connessione in serie o in parallelo.
- 2. La connessione serie-parallelo di bipoli affini è a sua volta un bipolo affine. È chiaro per quanto detto sopra che il metodo grafico in questo caso può evitarsi considerando solo i parametri R ed E dei bipoli affini controllati in corrente, e i parametri G ed A dei bipoli controllati in tensione come mostrato nell'esempio di figura V.2.

VI. Risoluzione di circuiti di bipoli connessi in serie e parallelo

Si consideri un circuito elementare costituito da due bipoli resistivi B_1 e B_2 . Tale circuito può essere risolto come indicato al paragrafo II. A questo scopo occorre conoscere le due caratteristiche di B_1 e B_2 . Dunque se B_1 e B_2 sono ottenuti da una o più connessioni in serie o in parallelo di bipoli resistivi tali caratteristiche possono essere ottenute come indicato al paragrafo V. Si veda l'esempio di fig. VI.1.





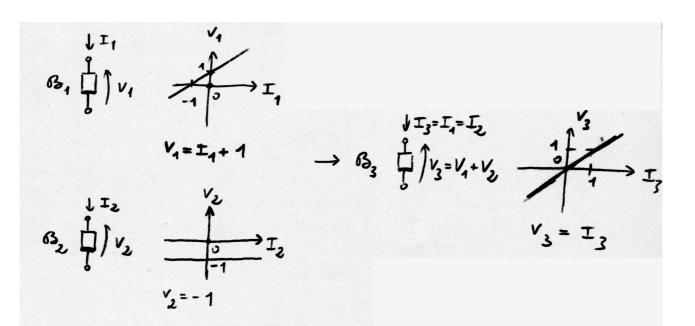


Fig. 11.4

$$B_{3} = I_{1} = I_{2}$$

$$V_{3} = V_{1} + V_{2}$$

$$V_{3} = R I_{3} + E$$

$$C_{4} = R I_{4}$$

$$C_{5} = V_{1} + V_{2}$$

$$C_{7} = R I_{1}$$

$$C_{7} = R I_{1}$$

$$C_{8} = V_{1} + V_{2}$$

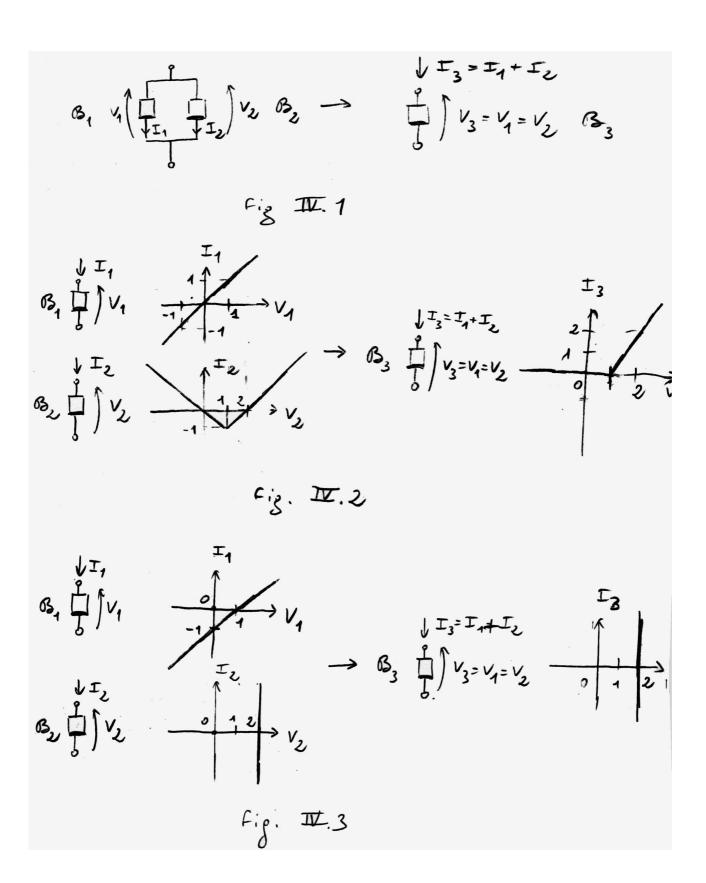
$$C_{9} = R$$

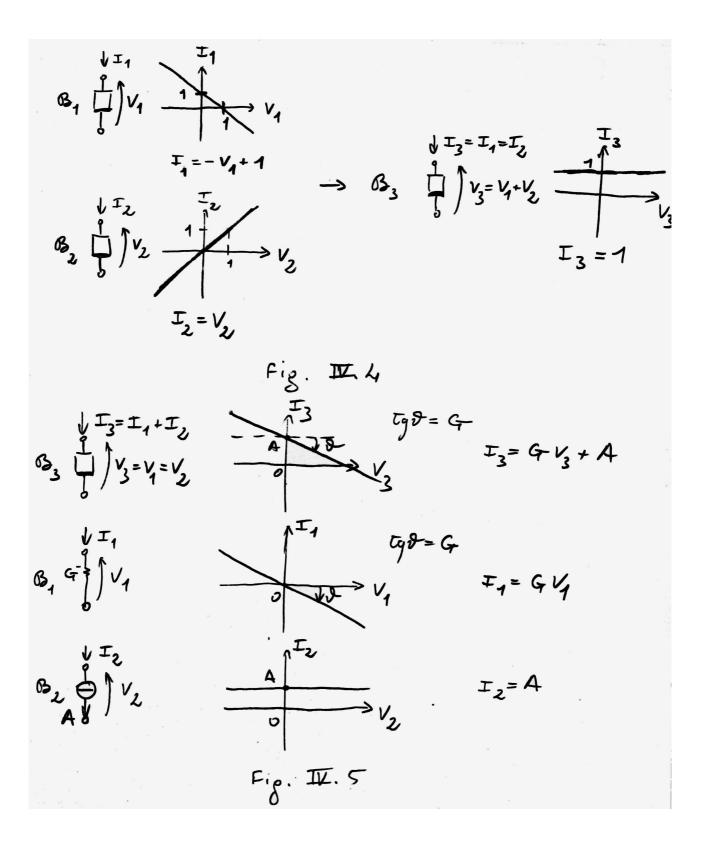
$$V_{1} = R I_{1}$$

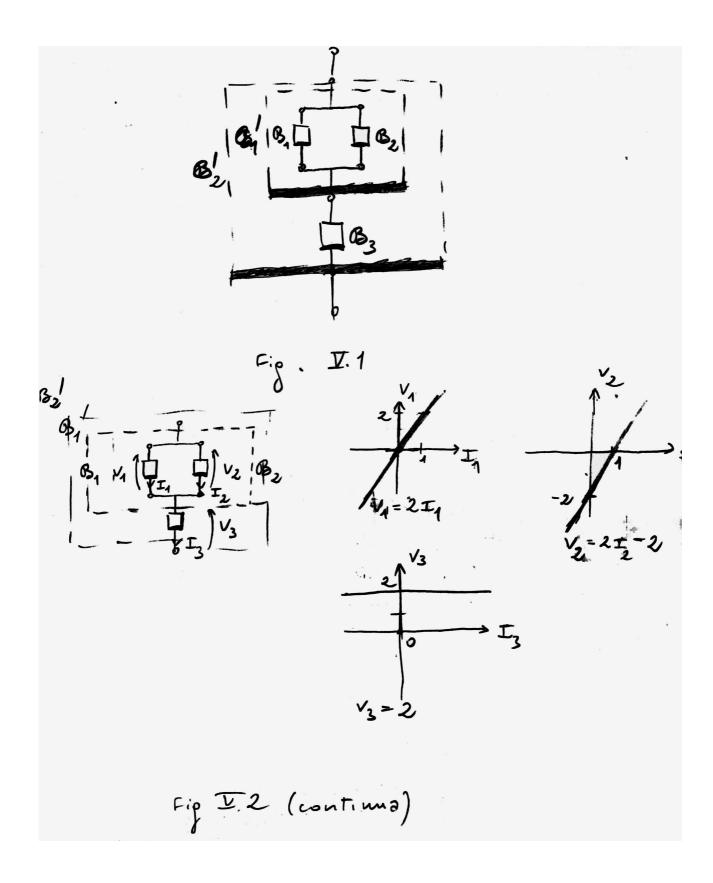
$$V_{2} = R I_{2}$$

$$V_{2} = E$$

Fig. # 5





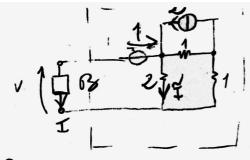


$$G_{1} \bigvee_{1}^{T_{1}} Q_{1} = 2 \implies \bigvee_{1}^{T_{1}} G_{1} = \frac{1}{2} \qquad A_{1} = 0$$

$$G_{2} \bigvee_{2}^{T_{2}} Q_{1}^{T_{2}} = 2 \implies G_{2} = \frac{1}{2} \implies A_{2} = 1 \implies \bigvee_{2}^{T_{2}} Q_{1}^{T_{2}} = 0$$

$$G_{1} \bigvee_{1}^{T_{2}} G_{1}^{T_{2}} = 1 \implies A_{1}^{T_{2}} = A_{1} + A_{2} = 1 \implies \bigvee_{1}^{T_{2}} Q_{1}^{T_{2}} = 1$$

$$\bigvee_{1}^{T_{2}} Q_{1}^{T_{2}} = 1 \implies \bigvee_{1}^{T_{2}} Q_{1}^{T_{2}} = 1 \implies \bigvee_{2}^{T_{2}} Q_{2}^{T_{2}} = 1 \implies \bigvee_{2}^{T_{2}} Q_{2}^$$



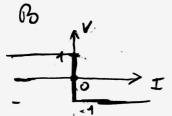
Nella Figure

2 Fianco dei resistori

cono riportati i valori

delle resistenze espresse

in Ohm (SZ).



$$G_{2} \quad V_{1} = 1$$

$$G_{2} \quad G_{2} = 1$$

$$G_{2} \quad G_{2} = 1$$

$$G_{3} \quad V_{1} = 1$$

$$G_{4} \quad V_{2} = 1$$

$$G_{5} \quad V_{1} = 1$$

$$G_{1} \quad V_{2} = 1$$

$$G_{2} \quad V_{2} = 1$$

$$G_{1} \quad V_{2} = 1$$

$$G_{2} \quad V_{3} = 1$$

$$G_{4} = 1 \quad X_{4} = 1$$

$$G_{4} = 1 \quad X_{4} = 1$$

$$G_{4} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{5} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1} = 1 \quad X_{4} = 1$$

$$G_{7} \quad V_{1$$

 $B_{2}' \rightarrow v_{2}' \begin{pmatrix} F_{2}' = 1 \\ F_{2}' = 1 \end{pmatrix}$ $B_{4} = J$ $B_{4} = J$ $B_{3}^{\prime} = \frac{1}{2} B_{4} V_{4}$ $B_{3}^{\prime} = R_{4} + R_{2}^{\prime} = 1$ $B_{3}^{\prime} = \frac{1}{2} B_{4} V_{4}$ $A_{3}^{\prime} = \frac{1}{2} B_{4} + \frac{1}{2$ 3 Soluzione $I \qquad (I, V) = (-1, 1) \\ (I, V) = (0, 0)$ (I,V) = (1,-1)耳.1